269 research outputs found

    Predicting local adaptation in fragmented plant populations: Implications for restoration genetics

    Get PDF
    Understanding patterns and correlates of local adaptation in heterogeneous landscapes can provide important information in the selection of appropriate seed sources for restoration. We assessed the extent of local adaptation of fitness components in 12 population pairs of the perennial herb Rutidosis leptorrhynchoides (Asteraceae) and examined whether spatial scale (0.7-600 km), environmental distance, quantitative (QST) and neutral (FST) genetic differentiation, and size of the local and foreign populations could predict patterns of adaptive differentiation. Local adaptation varied among populations and fitness components. Including all population pairs, local adaptation was observed for seedling survival, but not for biomass, while foreign genotype advantage was observed for reproduction (number of inflorescences). Among population pairs, local adaptation increased with QST and local population size for biomass. QST was associated with environmental distance, suggesting ecological selection for phenotypic divergence. However, low FST and variation in population structure in small populations demonstrates the interaction of gene flow and drift in constraining local adaptation in R. leptorrhynchoides. Our study indicates that for species in heterogeneous landscapes, collecting seed from large populations from similar environments to candidate sites is likely to provide the most appropriate seed sources for restoration

    Drift versus selection as drivers of phenotypic divergence at small spatial scales: The case of Belgjarskógur threespine stickleback

    Get PDF
    Divergence in phenotypic traits is facilitated by a combination of natural selection, phenotypic plasticity, gene flow, and genetic drift, whereby the role of drift is expected to be particularly important in small and isolated populations. Separating the components of phenotypic divergence is notoriously difficult, particularly for multivariate phenotypes. Here, we assessed phenotypic divergence of threespine stickleback (Gasterosteus aculeatus) across 19 semi‐interconnected ponds within a small geographic region (~7.5 km2) using comparisons of multivariate phenotypic divergence (PST), neutral genetic (FST), and environmental (EST) variation. We found phenotypic divergence across the ponds in a suite of functionally relevant phenotypic traits, including feeding, defense, and swimming traits, and body shape (geometric morphometric). Comparisons of PSTs with FSTs suggest that phenotypic divergence is predominantly driven by neutral processes or stabilizing selection, whereas phenotypic divergence in defensive traits is in accordance with divergent selection. Comparisons of population pairwise PSTs with ESTs suggest that phenotypic divergence in swimming traits is correlated with prey availability, whereas there were no clear associations between phenotypic divergence and environmental difference in the other phenotypic groups. Overall, our results suggest that phenotypic divergence of these small populations at small geographic scales is largely driven by neutral processes (gene flow, drift), although environmental determinants (natural selection or phenotypic plasticity) may play a role.ISSN:2045-775

    Special topic: The association between pulse ingredients and canine dilated cardiomyopathy: addressing the knowledge gaps before establishing causation.

    Get PDF
    In July 2018, the Food and Drug Administration warned about a possible relationship between dilated cardiomyopathy (DCM) in dogs and the consumption of dog food formulated with potatoes and pulse ingredients. This issue may impede utilization of pulse ingredients in dog food or consideration of alternative proteins. Pulse ingredients have been used in the pet food industry for over 2 decades and represent a valuable source of protein to compliment animal-based ingredients. Moreover, individual ingredients used in commercial foods do not represent the final nutrient concentration of the complete diet. Thus, nutritionists formulating dog food must balance complementary ingredients to fulfill the animal's nutrient needs in the final diet. There are multiple factors that should be considered, including differences in nutrient digestibility and overall bioavailability, the fermentability and quantity of fiber, and interactions among food constituents that can increase the risk of DCM development. Taurine is a dispensable amino acid that has been linked to DCM in dogs. As such, adequate supply of taurine and/or precursors for taurine synthesis plays an important role in preventing DCM. However, requirements of amino acids in dogs are not well investigated and are presented in total dietary content basis which does not account for bioavailability or digestibility. Similarly, any nutrient (e.g., soluble and fermentable fiber) or physiological condition (e.g., size of the dog, sex, and age) that increases the requirement for taurine will also augment the possibility for DCM development. Dog food formulators should have a deep knowledge of processing methodologies and nutrient interactions beyond meeting the Association of American Feed Control Officials nutrient profiles and should not carelessly follow unsubstantiated market trends. Vegetable ingredients, including pulses, are nutritious and can be used in combination with complementary ingredients to meet the nutritional needs of the dog

    Rapid evolution of invasive traits facilitates the invasion of common ragweed, Ambrosia artemisiifolia

    Get PDF
    Invasive alien plants, together with organisms introduced for biological control, are ideal study systems with which to address questions of whether, and how fast, organisms adapt to changing environments. We compared populations of common ragweed, Ambrosia artemisiifolia, from native (USA) and introduced (China) ranges at similar latitudes, together with herbivores introduced for biological control, to understand the rate of evolutionary adaptive response of an invasive plant to novel environments.Evolution of phenotypic traits associated with invasiveness was assessed by comparing differentiation in quantitative traits (QST) to that of neutral microsatellite genetic loci (FST) and through climate data. A common‐garden experiment estimated quantitative genetic variation associated with competition with grasses and biological control history by beetles.Three growth traits (height, total and stem biomass) and plasticity associated with additional nutrients were significantly greater in invasive compared to native populations and differed from expectations from genetic drift alone. Native, but not invasive, populations exhibited traits showing evidence of past selection and correlations with climate, consistent with the recent timing of introductions. Competition experiments between invasive populations and a US bunch grass showed reduced competitive ability in populations with a history of biological control that might indicate a trade‐off between competitive ability and herbivore resistance in invasive populations.Synthesis. Our results demonstrate the rapid rate at which traits favouring invasion can evolve in invasive weeds, such as A. artemisiifolia, but also that adaptation may reflect joint effects of release from specialist herbivores and novel climatic conditions

    Evolutionary aspects of population structure for molecular and quantitative traits in the freshwater snail Radix balthica.

    Get PDF
    Detecting the action of selection in natural populations can be achieved using the QST-FST comparison that relies on the estimation of FST with neutral markers, and QST using quantitative traits potentially under selection. QST higher than FST suggests the action of directional selection and thus potential local adaptation. In this article, we apply the QST-FST comparison to four populations of the hermaphroditic freshwater snail Radix balthica located in a floodplain habitat. In contrast to most studies published so far, we did not detect evidence of directional selection for local optima for any of the traits we measured: QST calculated using three different methods was never higher than FST. A strong inbreeding depression was also detected, indicating that outcrossing is probably predominant over selfing in the studied populations. Our results suggest that in this floodplain habitat, local adaptation of R. balthica populations may be hindered by genetic drift, and possibly altered by uneven gene flow linked to flood frequency

    Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.: An energetic advantage

    Get PDF
    We show that diurnally migrating Chaoborus sp. (phantom midge larvae), which can be highly abundant in eutrophic lakes with anoxic bottom, utilises sediment methane to inflate their tracheal sacs, which provides positive buoyancy to aid vertical migration. This process also effectively transports sediment methane bypassing oxidation to the upper water column, adding to the total methane outflux to the atmosphere

    The impact of family structure and disruption on intergenerational emotional exchange in Eastern Europe

    Get PDF
    Demographic trends across Europe involve a decrease in fertility and mortality rates, and an increase in divorce and stepfamily formation. Life courses and living arrangements have become less standardized and the structure of families has changed. In this article, we examine to what extent contemporary family structure and composition resulting from demographic changes affect emotional exchange between children and their parents, both from adult child to parent and from parent to child. Because the general level of well-being has been shown to be lower in Eastern Europe, thereby potentially affecting emotional exchange within families, we focus our research on Eastern Europe. We use the “conservation of resources theory” to derive hypotheses on how family structure may affect intergenerational emotional exchange. Family ties are assumed to be important resources of affection that people want to obtain and retain throughout their lives. Data from the Generations and Gender Survey (GGS) are used to test our hypotheses. In general, our data offer more support for the idea that families are resilient than for the often heard assumption that families are in decline as a consequence of the changed family structure and composition
    corecore